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Abstract: Nowadays we know that at least for discrete systems there is an equivalence between Time Reversal 

and the use of meta materials for the so called overcoming of the diffraction limit. But it remains a question 

concerning the efficiency on transporting information.  In this paper, we make a review of some previous works 

to the end of make a fusion between the uses of any of these two equivalent phenomena and two new fields 

namely the Plasma Sandwich Model, and the association of a new class of electromagnetic resonances and left-

hand-materials conditions. On the aim to obtain a rule that guides us for obtaining an observable parameter we 

recall some of our results concerning communication theory and we define a measure of the loss of information 

when left-hand materials conditions domains a broadcasting process. We then obtain a more general recipe that 

can be applied also for understanding left-hand material properties and other related physical systems. Because 

on the theory appears naturally the Green functions, we give a special place for the retarded and advanced 

versions of them. As an extremely important result we show how we can link the concepts of recording time and 

resonances to give a singular algorithm to push the efficiency to the top.   Also we give a simple academic 

example and show how this operates. 

Keywords: Communication theory, Time reversal, Resonances on a channel, Left-hand materials. 

 

I. Introduction 
Currently, the new ways of transmitting information are pushing Communications to extreme 

challenges. We have noted that it is well known, that random scattering of microwave or radio signals may 

enhance the amount of information that can be transmitted over a channel.  This is because the phase space 

where the transmitting phenomena occur grows with every single collision of the initial signals because the 

scattered ones reach another phase space regions and any new region provides additional information. But 

Communications involves not only anelectromagnetic waves issue and indeed we have an equivalent behavior 

in acoustics.The meaning of the sentence“overcoming of the diffraction limit”is maybe a point of viewof 

physical phenomena in which we can observe an unusual concentration of a signal but the only very important 

think is the amazing of that localization. Whatever we know that the tools emerged from different works have 

increased the ways to improve the signals focusing and to avoid the loose of information.  

Time reversal, or phase conjugation in the frequency domain, is a process where a source at one 

location transmits sound or electromagnetic waves, which are received at another location, time reversed (or 

phase conjugated), and retransmitted. The retransmitted signals then focuses back at the original source location, 

where the reception is relatively free of multipath contamination.  

If we compared with the free space resolution, the multiple scattering of the obstacles enlarged the 

effective aperture in the so-called Time Reversed Mirror for acoustic signals provided they are placed in 

aleatory manner. The focal properties of the time-reversal process were able to suppress cross talk even though 

the receivers were at the same range and only separated by depth. 

 In this work we recall some of our results and explore how information theory can help us to define  a 

measure of the lack of information in Time Reversal Techniques no matter if we talk of electromagnetic nor 

acoustic waves, but now we add a very innovating chapter on Communications that is the role of the new 

models of resonating broadcasting[1-12]. And even when technically it is not possible to measure different 

recording times for electromagnetic waves we can alternatively uses those times as very important parameters. 

Indeed we introduce the recording time explicitly in the advanced Green function. 

We assume that our lack of information measure is also validfor understanding left-hand materials 

properties[13-18]. 

 

II. Left and right hand materials 
Materials existing in nature have a positive refraction index. These are called Right Hand 

Materials (RHM) in order to distinguish them from artificially created materials which have a negative 

refraction index, and which are called Left Hand Materials (LHM) [13-18]. The complex refraction index 

n is defined as the quotient of the velocities of an electromagnetic wave in the medium and in empty 

space. This refraction index can be written in terms of the magnetic permeability μ and electric 
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permittivity ε as
2

n  , when both μ and ε are negative for a range of frequencies we can write the 

permeability as 
2

i   and the permittivity as
2

i  and then we can see that trivially n< 0. Among 

many other consequences, this means that group and phase velocities are opposite.  

The extraordinary property of LHM of allowing waves to travel in opposite sense to energy 

transmission translates itself in the fact that the so-called evanescent waves emitted by observed objects grow 

inside the material instead of diminish. At the end of their journey the electromagnetic waves will have 

recovered the information which otherwise is normally wasted. 

Among meta materials we find lenses made up of thin films of some metallic compounds. In particular, 

an ultrathin film of silver placed between two materials of positive refraction index constitutes a Superlens with 

a negative refraction index n. The reported experimental results are amazing, among other reasons, because 

there are applied to images in the visible spectrum. 

In this case, while evanescent waves are losing amplitude as they go through a “right hand” medium 

(with a positive refraction index), when they reach the film they grow until, when the image is formed, they 

superpose with the field that usually forms the image, enhancing it and giving it a higher definition beyond the 

diffraction limit. The image has a high resolution of λ/6 (λ is the wavelength used for illumination). As we will 

see in chapters IV and V we can see that the transmitting media in a broadcasting process also behaves like a 

left-hand material because of a plasma-sandwich model are working. 

 

III. Time reversal techniques and the overcoming of diffraction limit 
As we said above it is a matter of difference in opinion, if we call or not in optics, overcoming the 

diffraction limit to the increase of focusing on a spot more little than the wavelength but indeed this physical 

phenomenon requires a negative refraction index or a super-resolution due to a fortunately combination of 

individual waves.On the other hand, in acoustics this possibilityis associated with time reversibility. Indeed we 

have shown recently also an electromagnetic version of TRT[18, 22, 27]. So we have two different kinds of 

systems that share the same mathematical description, so with the aim of describe both of them simultaneously 

for their use on Communications, we start with a discrete acoustical system and then go to a general treatment. 

Due to the fact that the formalism we have developed for the study of time reversibility refers to discrete 

systems, we will adhere to this type of systems, without losing generality. Firstly, let us recall that the wave 

equation can be written as 

 
 

    
2

2

2

,
, /

u r t
k r u r t r

t



 

                                                                                

 (1) 

 r being the mass density and  k r  the compressibility of the propagation medium, while  ,u r t  is the 

acoustic signal that for a discrete system may be written as  , ( )j j
u r t u t , where jr  may be the position of a 

transducer or a dispersion site, a source or a sink. 

Acoustic time reversibility has its foundations on the fact that the wave equation is second order in 

time, which allows solutions which travel toward the future or the past, as if a film was ran forwards or 

backwards. One of the conditions to carry out time reversal successfully is that the system be ergodic, which 

guarantees that the signal may travel both senses in time. To overcome the diffraction limit we must describe the 

signal propagation toward the future or past by means of equations of the same type [18, 22, 27]. Considering a 

signal travelling towards the past, the corresponding integral equation is 

Where  ( )*
, '; ,j sG r T t r t


is the free Green function, 

*

s
A  are the complex dispersion  

     ( ) * ( )*
( ) , ; ,j ss s s j

j

u T t u T t A G r T t r t u T t dt





        
 

                                  

(2) 

coefficients and ( )
s

u T t  is the returning signal that has travelled toward the past. The term  ( )

s
u T t


is a 

sink term, which guarantees that the outgoing and returning equations are both inhomogeneous integral 

equations. In this equation there is a parameter T , which represents the time during which the outgoing signal 

(the one travelling toward the future) is being considered (a recording during a time T  might have been carried 

out). It is observed[9] that the time-reversed signal has a definition of a fourteenth of λ, the wavelength of the 

used signal for acoustic signals but also for electromagnetic waves.   
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IV. The  Vector Matrix Formalism 
Now, making a leap to electromagnetic waves we recall the vector matrix formalism which nearly 

reproduce or better generalize the discrete scalar time reversal acoustic model and include a new model of 

behavior on discrete broadcasting systems that is the one we called the Plasma Sandwich Model (PSM) and we 

put some associated parameters appeared on it into the namedVector Matrix Formalism (VMF)[8, 18, 22]. But 

we must underline that is the resonant behavior the one we must be taken into account for an extraordinary 

resolution. To this end, we remember that a wave equation like equation (1) can be written as the Fourier 

transform of an integralHomogeneous Fredholm Equation (GHFE) for resonances, and doesn’t matter if for 

acoustic or electromagnetic ones. To analyze the resonant behavior we have eliminated the source term (for this 

reason we showfirst the homogeneous equation)  and obtain the following equation:  

( )( ) ( ) ( ) 01 K
m n

RR
n

w    
  

                                                                                 (5) 

Where the kernel  is the product of the free Green function  with the interaction  A so 

explicitly  

( )( ) ( ) ( ) 01 G A
m n

RR
n

w    
  

                                                                                 (6) 

It is not difficult to think that if we have a transfer matrix description of a problem we must have a VMF version 

of it.  Of course there are very important differences between these formalisms, for example, VMF includes 

explicitly a mechanism to makes easy a time reversal process. Also we have a frequency domain instead a time 

dependent one, the former the appropriate for information theory applications. But possibly the most important 

difference is that VMF formalism includes the concept of the resonant solutions. In the present work, we start 

with the appropriate VMF generic version of the PSM and then introduce the relevant parameters in the next 

section. 

 

V. The Kernel with PSM parameters 
In this section we find the resonant frequencies for a specific problem, but we must remember that 

those resonant frequencies can be used only to associate an interval of frequencies of a real signal to a device 

that could be an antenna. The form of the kernel depends of the response of the media in some circumstances 

that can vary even from a different time interval. So we use an example that is very easy to work but that is not 

important how is the shape of the signal we used to get it. Now, we can find the resonant frequencies in this 

academic example. To this end we choose a convenient kernel , for simplicity we do not take into 

accounts the three components of the electromagnetic field. Supposing we only has one, but we have two 

emitting antennas. A possible kernel is [1, 3-7]: 

 

                                                       

(7) 

 

In equation (7) we have introduced the Plasma Sandwich Model (PSM) parameterd .  We are used the 

definition: 

 

Md                                                                                                                               (8) 

 

In definition (8) k has the physical meaning of the wave number of an incident beam that interacts with the 

magnetic and electric fields in a way that the whole kernel is the expressed in equation (7).  But  d M is an 

average thickness of a plasma-magnetized layer that generates this interaction. The parameter 
 
w

p
is an average 

value for the plasma frequency in the same magnetized plasma layer that can be expressed in terms of the local 

electron concentration in the layer as: 

2

1

2

0

1

2
p

Ne

m 


 
  

 
                                                                                                               (9) 
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In this equation  N is the electron concentration, 
 
e

0
is the permittivity of vacuum and  e the electronic charge. 

We can observe that the change in these parameters gives different broadcasting regimes[5]. The PSM also 

supposes that we have not a stationary and unique set of iterated layers but a series of sets changing with time 

and therefore with different effects for distinct frequencies. At this point, it is important to remember that the 

equation we must solve is equation (5) where                           



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n
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K

                                                            (10) 

 

The conditions for resonances are that Fredholm’s determinant for the equation (7) equals zero, and that 

Fredholm´s eigenvalue l equals to one [6, 9, 20, 21]. 

These two conditions give us the resonant frequencies for the system constituted by these two antennas but 

dependent on the plasma sandwich model parameters. Now, we must remember that resonances have a special 

behavior that can be represented by a complex frequency: 

i                                                                                                                  (11) 

The imaginary part Lis responsible for the amazing transformation of the evanescent waves for travelling ones. 

Also we have the relation between w and the wave numberk , that is  

 
                                                                                                               (12) 

By substituting (11) and (12) into equation (7) we have that resonance condition can be written as: 

0
A B

B A

 
  
                                                                                                            (13) 

Where    

  
A = r

p
sin(r

p
)ch g

p( ) - l
p( ) +g

p
sh g

p( )cos r
p( ) +

 

  
i r

p
sh g

p( )cos r
p( ) +g

p
l

p( )
 

                                                                                                                                       (14) 

And 

  
B = g

p
cos r

p( )ch g
p( ) + r

p
sin r

p( )sh g
p( ) +

 

        cos sin
p p p p p p

i ch sh     
                                                                    (15) 

                                                                                    

In equations (14) and (15) we have used the following definitions:  

MM d 
   (16) 

 2 2

p M p      
                                                                                           (17) 

 2p M p     
                                                                                                     (18) 

 2 2

p p p    
                                                                                                       (19) 

 

To have an image of the solutions of equation (13) we can make  K = x and 
 L = y those are the real and 

imaginary parts ofw , and fix the value for the plasma frequency 
 
w

p
so we have the following image:  

We obtain for the particular conditions: 

    (20) 
610p Hz 

                                                                                                                (21) 

The solutions (resonances):                            
5

1 5.009 10 Hzx  
                                                                                                     (22) 

2 985.99Hzx  
                                                                                                           (23) 



Top Efficiency on Communication Theory 

DOI: 10.9790/2834-1106020111                                           www.iosrjournals.org                                   5 | Page 

In this case only 
  
x

1
is properly a resonance and 

  
x

2
has not physical meaning but maintain their orthogonality 

properties. 

 
Figure 1. Image of the solutions of equation (13) when the related equation is 987.93(x²-y²-10⁶) =y (10⁶-2x). 

     

VI. Communication theory measurement of information loss 
Because we have now a wide vision of the loss of information and we know that this is the reason that 

the images are not perfect, we can use the results [23-27] of E. Shannon, H. Nyquist, N. Wiener, R.V.L. Hartley, 

E. Hopf, and other authors that have formulated a measure of the loss of information in communication systems. 

We support our mathematical results on related works [6, 9, 18, 20, 22], whichgive us a solid theoretical frame 

to our present and future papers . Indeed because the capacityof a channel and entropy are very close concepts, 

we can use some of the results we have cited above to answer the problem for TRT and LHM.   

Basically, we recall two theorems: 

 

Theorem I. 

If the signal and noise are independent and the received signal is the sum of the transmitted signal and the noise 

then the rate of transmission is 

 

)()( nHyHR 
                                                                                 

(12) 

 

This means that the rate of transmission is the entropy of the received signal less the entropy of the noise. The 

channel capacity is  

 

)()(
)(

nHyMaxHC
xP



                                                                               (13) 

Theorem II. 

IV. 

The capacity of a channel of band Wperturbed by white thermal noise power N when the average 

transmitter power is limited to P is given by

  

N

NP
WC


 log

                                                                                            (14)

 

In this expression P is the average power of the transmitted signal and N the average noise power. 

From these two theorems we make our proposal for a channel where we have lost information in three ways. 

That is, we have limitations on the maximum frequency W (band), the presence of different classes of noise, and 

on a limited time T available for a time reversal process. Then defining a joint average for the power ),( TnQ  

the channel capacity is 

 

),(

),(
log

TnQ

TnQP
WCT




                                                                                (15) 
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Thisremainsequal to zero when 0P . The very significant feature of this proposal is the explicit dependence 

on T , in both the joint average power and the channel capacity, as opposed to the conventional treatment of the 

signal time duration that is considered as a limit process which tends to infinity. This is a consequence of the 

explicit form of the Fourier transform of the time reversed Green function that changes with a factor
Tie 

, so 

even if we are not forced to do so, we can think of it as a parameter which defines the channel. We can think of 

an arbitrary channel but, when we use it to reverse any signal in time we follow a different process depending on 

the time Twe decide to fit. Then we can label the channel with each T  as a different one and of course with a 

different capacity with those corresponding to other values ofT . Because of the arguments expressed 

previously in this work, we can use this measure to the same extent on LHM, ATR and TRT. For a related 

discussion of the equivalence of the time reversal methods and the employment of left hand materials we can 

see reference [28], and for the use of time reversal on antennas we can see also reference[14]. 

 

VII. An academic example 
In order to give an insight into information measurement applied to TR, let’s propose that our system behaves 

like a filter (so in this particular example we have not loss if we select Tt  ), in addition we also propose that 

instead of the pulse in Eq. (13) we have another form like [10] 

 

Wt

Wt





2

)2sin(

                                                                                        

(16) 

 

And also that we have instead of the incoming signal in Eq. (15) another like [10]
 

 

 2

2 )(sin

2

1

Wt

Wt





                                                                                                                                            

(17)
 

The input function Eq. (16) is a sample of a more general function generated by the sum of a series of shifted 

functions 

 

Wt

Wt
a





2

)2sin(
.                                                                                     (18) 

 

Where a , the amplitude of the sample is no greater than S . ( S is the peak allowed transmitter power). 

The channel capacity would be [23]approximately 

 








 


),(

),(
log

TnQ

TnQS
WCT

                                                              

(19)                           

 

This occurs if it is provided that S/N is small. 

In the time reversal process we have shown that for each Fourier component we should add a complex 

exponential factor dependent onT .But we know now that the tool is the same and that only the numerical value 

of channel capacity TC  changes. We see how in practice the time reversal parameter T appears explicitly but 

also that when we cut the time duration of reversed signal it ispossible to consider them as an additive 

contribution to ),( TnQ .  

But the form of equation (19) suggests a generalized measure of a blend or mix channels capacity when sharing 

the same band W and differ only by the recording times  

 

                                       

  (20) 

 

0iT  . The fact that we are using the same band but different cutting limits , also suggests that we 

can design an appropriate filter that can distinguish between signals according to the recording time that is we 

can superpose signals with the same frequency range but with different recording times. In a previous work we 
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have sketched a filter, but now we give a better-defined device so we propose (see Figure 2) as a hint to get the 

filter, the following steps for both the transmitter and the receiver: 

Mirror
Band
Generator
Amplifier

(Resonances)

1 Band

2 Band

Q Band

Blender

Secondary
Mirror
Band
Generator
(Recording

time)

1u

2u

nu

frequency
decreaser

frequency
decreaser

frequency
decreaser

Signal T
1
, unique band 

0

Signal T
2
, unique band 

0

Signal T
n
, unique band 

0

Receiver

Transmitter

Unique Band 
0
,Signal T

1

frequency
elevator

1u

2u

nu

Blender
Band

Generator

1 Band

2 Band

QBand

Unique Band 
0
,Signal T

2

Unique Band 
0
,Signal T

n

frequency
elevator

frequency
elevator

transmitter

transmitter

transmitter

 
 

Figure 2. We show the flow chart for a proposal device. This can emit andread the blended messages with 

recording times beneath to the unique band
 
w

0
. 

 

Transmitter  

First increase the  n frequencies onthe unique entrance band 
  
B(w

0
)(that is centered in frequency 

 
w

0
)incoming from the inverse of , then the  nnew central frequencies (and their 

signals) enter a blender and the mixed signal is taken by a Band Generator and separated in Q new bands 

centered at the frequencies (each corresponding with a resonant frequency). Finally, each band 

enters his signal transmitter.  

 

Receiver 

The travelling Q signals enter the Mirror Band Amplifier, so called because it knows that there are Q 

resonant frequencies and then can create (or separate the signal in Q resonant bands)Q sub-bands and amplifythe 

signal in each band (at this moment each band carry a piece of the originals n different signals) after this, the Q 

signals are blended and then sending to a Secondary Mirror Band Generator which knows that there are  n

recording times and because of that it can create  n  bands with the higher central frequencies 

 (these last signals could be amplitude modulated signals) and distribute the blended signal among 

them. Then every signal on each band enters a frequency decreaser (the inverse operation performed by the 

frequency elevators in the transmitter) so we retrieve the n  original signals corresponding to the unique band 

  
B(w

0
). 

For the example on section V we have that the total number of resonances is
  Q = 2, and the two resonant 

frequencies are 
  
w

1
= 5.009 ´105

Hz  and
  
w

2
= -985.99Hz 

 

VIII. Left-hand materials conditions and a Little Theorem 
Based on the equivalence of the TRT and the properties of the Green function, we can trust that any 

discussion about the interaction of meta materials with electromagnetic field can be done through this function 

and simultaneously observe the effect of a time reversal.  For this reason we can now describe the error in terms 
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of the Green function by the hypothesis that LHM can be put to test by forward and backward in time signals 

and read the results with two points of view: first the direct effect of the loss of information because of the 

limited record time T or second, how the negative refraction index helps to preserve information.  Now we can 

review our previous results and generalize by the use of the kernels, so we cancharacterize the capacity of a 

channel in many different circumstances. So we have made use of the analogies [28]between the TRT and the 

employment of LHM in order to propose that we can express the capacity of any of these negative refraction 

index materials in the same terms or procedures as those of TRT. Also we can propose an identical description 

for the channel capacity that is Eq. (15) and its generalization equation (20). Then, the matrix formalism for 

discrete systems can be used to characterize the channel capacity of transmission of information in a process of 

time reversibility using the Fourier transforms of the Green functions (properly we use the kernels with the 

interaction matrix A = 1) forward and backward. That is, if by a first step the signal transforms like (in the 

following equations I and F stands for initial and final places) 

 

   
Y F (w ) = 1+ R(w )éë ùû X I (w )

                                                                  (21) 

 And then in a second step returns to the initial place by means of the operation 

 

 
                                                                                                                      (22) 

Then the complete signal trip would be 

  

                                                                                                                        (23) 

So that by defining the error in the time reversing process by 

III ZXX                                                                                              (24)   

We can write this like                                                                    

                                     (25)  

Or 

 

                             (26)
 

 

Equation (26) is a corollary that shows explicitly the role of both the forward and backward Fourier transform of 

the Green function (we have done  A = 1on equation (6) for convenience and also for the complete kernels 

  K(w )and
  R(w ) ).Equation (26) is very clear about the origin of the errors because we can see for example 

that in the case that the forward and backward Green functions are mathematically one the transpose conjugated 

of the other for a perfect time reversal (when acting the first on a column vector and on a row vector the other), 

we get that the error is zero and that the error increases as the differences of both functions also increases. In a 

very special case, we can then propose that 
  K(w )and 

  R(w ) only differ by the factor 
i Te 

 or   e
2p i

w

w
T when 

the only source of error is the recording time T, so that we obtain from equation (25) that: 

 

                                                                                                                                           (27) 

In equation (27) the function 
   e

-2pi
w

w
T K(w )has the form of the Fourier transform of the Green function but 

with the argument translated by an amount equal to the recording time T that appears explicitly in equation (19) 

that is the Fourier transform of:
 

   K(t -T )  

                                                                                                                                            (28) 

But with the time running backward; so as we will show in a moment, if T is very short, the error will be very 

huge. On the contrary, if the time goes to infinity the error will go to zero.  Resuming, the new equations (15), 
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(19), (20), (25), (26) and (27), make possible a characterization of the lost information in left-hand materials not 

only for microwaves range, but also for visible frequencies because we have extended recently the time reversal 

techniques (see reference [3, 10]).  

Now, we can define: 

 

(29) So we can write equation (27) like: 

 

 

                                                                                                                                                                    (30) 

And because the kernel of theFourier transform of the Generalized Inhomogeneous Fredholm Equations 

(GIFE) satisfies the following integral equations: 

 

 

                                                                                                                                                                    (31) 

 

                                                                                                                                                                    (32) 

While equation (31) exactly represents the problem with a finite recording time , equation (32) represents a 

hypothetical problem in which the recording time is infinite. 

Substituting equation (31) into equation (30) we have: 

 

 

                                                                                                                                                                  (33) 

Then we can suppose that the two kernels in equation (33) represents the real and the hypothetical problem 

described above. Of course we see that if real conditions approximates the ideal ones, the error is clearly 

zero. But we can factorize the interaction matrix in equation (33): 

 

 

                                                                                                                                                                    (34) 

But equation (34) says clearly that the error does not depend on the form of the interaction, only depends on 

the recording time . Even we have supposed that the only source of error was the recording time, we does 

not suppose any particular behavior for the interaction. So we have proved a little theorem: 

 

Theorem III. 

In the time reversal problem and for left-hand materials conditions the normalized error:  

 

 

                                                                                                                                                                    (35) 

Is independent of the explicit form of the interaction provided the last is isotropic ( ). 

 

Returning to the time representation, for the time dependent retarded isotropic free Green function related to 

we has explicitly 

 

                                                                                                                                 (36)
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And for the advanced time dependent free Green function related to  

 

                                                                                                                             (37)

 

 

That is the recording time appears explicitly in the advanced Green function and we can show that its 

value makes possible to blend many signals on the same channel without interference. It is important to note 

that for resonances the relevant Green functions are precisely the free ones and not the complete ones as we 

can see on equations (5) and (6). 

 

IX. Conclusions 
We have shown in equations (15), (19), (20), (25), (26) and (27), that it is possible to use the 

equivalence between TRT techniques and the properties of the Green function to define the capacity of a 

channel, the loss of information and the error in the time reversal process. But also that we can extend our 

results to describe the performance of LHM when interact with electromagnetic field forward or backward in 

time. Then, because of both the interpretation of a resonance with left-hand materials conditions and the PSM, 

we designed a broadcasting system that is capable for distinguishes between signals according to their recording 

time, and that we can superpose signals with the same frequency range but with different recording times with a 

little loss because of resonance technology, then we are pushing Communications efficiency to the top. In 

addition we have proved that for the TRT and LHM the normalized error is independent of the particular 

behavior of the interaction. 
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